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PREFA CL~

The research contained in t h i s  report was begun by Professor
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on Electromagnet i ’  ~c :tt ~ t o r i  n~ he ld  in C h I c a g o  n Jun e 1 ~)io (se e

Comxnun Ic at .  Ions  litboratory Report  (c— i
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~~~‘ i m t  I r Id ’  Resettrc ii lir l ie r ~~i’~ ui t . AFO~ R— ’( ~~~~~~~~~ and A I ’ o C R — ( o _ . ’F~l3

it has been ‘ omp 1 et ed  un it’ r grant.  AF OSR—i’(— $:“ ( Program ~~ na~ t ’ r

Dr. Robert  N.  Bucha .l / N M ) .  The manu s c r i pt , was typed by l h .  A n n a l i s a

Fugal i—Shield .
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ABSTRACT

A new formulat ion for rad ia t ion  from open—ended gu i d i n g  s t ruc tu res

is presented . The di t ’ferences between t h i s  formu l a t ion  and conventional

physical opt ics  or d it i r : t ct  ion ray t heory is d i s i ’ussc i i .  The t heory has

qu i te  general v a l i d i t y  and is here app l ied  i n  dc l  ‘ i i i ,  t o cpen— cnd ed t rans-

m i s si o n  l i nes , coaxial cables , parallel  p1 a t e  wavegu I dos and c ir cu l a r  w: cv c—

guides .  For the examples ~1iscussod , check ing  w i t h  e x ist i n g  so lu t ions  is

prov ided . Finally ,  the theory is extended to the case of f i ~c r ed op en —

ended guides .

_ _ _ _ _ _ _ _ _ _  
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CHAPTER 1

ThU I’Rt ~~d E M

Radiation from apertures i s certainly impor t an t from the a p p l i c a t i o n’s

viewpoint. In this paper r ad ia t ion  from open—ended ~u i d i n g  structures ,

as waveguides , coaxial —cab les and horns , is considered. The classical way of

analysis is based on the so—called a.pc&twtc meth od [i ]  wh ich  uses the phy-

sical optics approach coupled wi th  ‘~i reh ho f f ’ s ap p r o x im a t I on .  More r e c e n t l y ,

optical or qua.4L-op-t~caJ? t e c h n i q u es  h ave been app l i ed , decomp os i l iC t h e  w ave

inside the guide into  a set of p lane waves and t hen considering t ho sc a t ter in g

of these plane waves by the edges of the  g u i d e .  The basic LIe:c is to model

the lat ter  problem as the scat,t e r in g  of a plane wave by a met al half—pi ano .

These ideas and tools have been appli ed t o  th e analy si s of re f lec t ion ins ide

[C—7], and rad iation from the guide [8—17]. A different model has also been

suggested for the anaiy si s oi ’ the s c a t t e r i n g  process :  a half—plane over cit-her

an electric or a m a g n e t i c  i n f i n i t e  wall  [ 1 8 — 19j  . I t .  is  also important ,  to

recognize  that .  exac t sot  Ut ISUS to the  r a d i a t i o n  problem are  a v a i l - able in a

l i m i t  ed number o t ’ cases : t-he pam li e I — p i n t  c and cy I i  ndr is a I wavegu I des { CO I
the lat ter  w i t h  e i t h e r  az~~~utal l j  s~~ met~r i c  or as~~mmet .r ic  cxc i t a t  ion . The

scat. t or i n c  by two hal ‘— p 1  :cnes has il so been eons idol ’ O~1 I Ci ] .

The aperture method h i s  well kno~~ l i m i t  a l i e n s  and shortcom i ngs.  I t .  is

reasonably simple only when the  sc : t l ar  ap p r o x i mat ion is adopted ; t h e  vect or

theory , however , yields only  m a r g i n a l  improvements [ l ii .

The quasi—optical approach seems to g i v e  g’rod resul t-s . At. t ransit ional

regions, e.g., at lit—shadow boundaries , t h e  e x p re s s i o n  of the  d i f f r ac t i o n

coef f ic  ient ~ becomes r a ther  invo lved [CC , C I . In t h e  caus t i c  r e g ion s , e i t h e r

f i c t i t i o u s  equ i v a l en t  edce curreri t s [ . ‘t ~ ] or a spec I s t  t. heory [C5  I ~h~ u Id he
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adopt ed ; the l a t t e r  is a I so u s efu l  • I t ’ i t  (‘ I necessary , i c r ’  non—p lanar  cxc i —

tation . In the case 01’ m u l t i p l e  r et ’l e st i o n s , as always happens for’ apertures ,

the analysis  although st rai ght forward in pr inc iple , is extremely cumbersome

in practice.

There is, however, at least another poss ib i l i ty  for  comput ing  radia t ion

from open—ended guid ing structures. Probably the best way to introduce the

basic philosophy of the new method is to consider a wire antenna with sinu-

soidal current dist’ibution 10 sin8~~ (see Fig. 1) and a time dependence

exp(iot). The far—field phasors (‘an be easily computed , the result being:

I sin® icos® cos®sin 8 1 + cos® cos8 1
0 . a . a a aE = 0 e x p (_ .i 8r )  — + e x p (— i 8 c o s O )  ( 1 .1)
14nr cos2O — cos ’G cos 2 ® — cos 2Oa a

:, =~~~~~~, B = ~~~~~ (~ .:~- 
H

.
~~r

_

~~~~~ 7

Fig. 1. Rad ia t ion  from a w i r e  ant -enn ’~. 

—— .-
—
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wher ’e ~ =
a a

Eq. (1.1) suggests this model for the rad ia t ion  process: the f a r— f i e l d

is given as the superposition of two spherical waves from the end—points

z = 0; — 1. of the antenna. For a wire infinitely long in the —z direction

the second term in the bracket of (1.1) can be neglected , and we have:

I . sinOcos® exp(—i 8r )
_ _ _ _  

a 
_ _ _ _ _ _ _ _E0 

= 
~ 2irr cos® + COS® cos® - COs® (1.3)

= E
0/~ (i.14)

where I. = — I /2i is the amplitude of the c~de~vt cwvt~vi~t. Note that the

electromagnetic field (1.3—14 ) can be conveniently derived from a vector po-

tent ial

I. 1 cosO exp (—18r )
A C 

____  
a 

(1.5)
—iw 2iTr cos® + cos® cosO — cos®a a

wherein the connection with far—fields is given by

A A
• E — i o r x A x r  ( 1 . 6 )

H = — ~~~~ ~~~x A  ( 1. 7)

For a two—wire transmission line——the simplest conceivable guiding struc—

tur e—~ TEMassuinption for the incident  wave (®
a 

= 0 ) ,  hypothesis of no higher

order interaction between the two wires, and superposition give (see Fig. 2):

I. exp(—i~ r) exp(i~3asinOcos4 ) — exp (—il3asin®cosq) A_
y

—it ~j  2irr 1 - sin 2 Osin 2
~ 

— - -~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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b i g. C. RadiaL ion from a two—w i so trmisrn i s n i  c i i  I i n n .

N t . ( f lin t, lie t ’ ie  hi i s  ever -y wl ie re  we I I—ht t ’havo l  . I n  par ’t I ul :tr t h e  ( l i e n- i I i . --

r ad ia t ion  d iagram is given  by:

sin( 8acosq )
E—plane (0 90°) : ( 1. 5)

8acos~

H—plane (~ = 0) : sin(~~asinO) (i.t~)

The, ‘v.,ad_&t~ion p~oce~~ ~o modeiled a~o ~two ~phen~caJ ~~ve~o ~to m the ta’e end-

poL~tt~ o~ the tkan~ m~ Len Unc . This model has a simple physical  counter-

part in time—domain when a pulsed voltage is propagating along the transmi s—

sion line. The local charges induced on the t w o  curves ( apparently ) move

_
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wi Lii constant. Vt’ lot’ i t•y and t ’adiat  ion Lakes p l a s t ’ on I y at I he very  en,] ci ’

i , I i i ’ I i r i t ’ w i t e t a  t ’ l iat ’ges are r e t ’! eel e l  w i t  Ii  a (di sent i l n i e i i s  t ’l n inge  ci v o le -

c ity  d i rer  L i  on.  This  idea has been cx p iot t,ed i t t  [ I . Not  e Cur t .  her ‘ci’

futur e refe rence , that the fields individual ly radiated by each wire di-

verge in the direction 0 = 0, i .e., the direction of the incident wave.

However , due to the dispersion equation of the line , cos® = 1 , the two

fields compensate and produce a f i n i t e  result  along 0 = 0.

For an open—ended guiding structure we wil l  have surface currents  inc i-

dent on the truncated rim of the guide. Accordingly, the  ~Ladiit~Lon p~’~oce~~

can be modelled a~ ~upeitp o~s~tLon o~ ~~~~~~~~~~~ 6phe&icai ~~ VC4 cOrn~tng ~kom

each poLr~t o~ the ,PL,ôn . Obviously, a satisfactory theory should take into

account interaction between incident surface currents. We will derive ra-

diation coefficients associated with incident surfac e currents from the sim-

plest possible canonical problem for which an exact solution exists: the

parallel—plate open—ended waveguide.

It is important to recognize the profound difference between this ap-

proach and the quasi—optical  one. The lat ter  emphas iz ing  the geometrical

r e l a t i onsh ip  between f i e ld—poin t  and r i m — p o i n t , so that the radi at ed f i e l d
-l

is due to a f i n i t e  number of con t r ibu t ions  along the r im ( except in caust ic

regions where , in any case , the quas i—optical approach fails to give a satis-

factory answer). On the contrary , t h i s  new appr oach is s t i l l  based on a

field theory rather than a ray theory a n ]  t ,he r a d i a t i o n  is computed as an

integral along the truncated rim . Accordingly, as long as the radiat ion

coefficients are well—behaved , no problem can le anticipated for the compu-

ted field everywhere. It is here noted that . thi s method has nothing to do

with the equivalent edge current, procedure [214), wh ich is still based on a

ray—theory model and makes r e fe rence  to f i c t i t i o u s  e l e c t r i c  and m a g n e t i c  c u r —

r e nt s .

_ _ _ _ _ _ _ _ __ _ _ _ _ _  _ _
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CHAPTER 2

RELEVANT FORMULAS AND EXPANSIONS

For the reader ’s convenience , most of the mathematical  formulas used

in the next sections are collected below.

OJein~steAin’~~ d~L,~ ’~ac,tLon ~anc~tLon, e~ac~t [27 11 .

Definition :

+ 1 ( 1  - iu 2 )  ( 1  - 
u2 1/2

U (a, p) = ~~ — ln[ 1 + exp(— ip — pu 2 ) )  
~~~ 7/2 — 

. du (2.1)
2’~i u ( 1 — i ~ - )  — 

2

Properties:

u± (-a, p) = -U~~o, p) (2.2)

U~-(+o, p) = + ~~
‘ ln[ I + exp(— ip))  ( 2 . 3 )

Expansion for large a and p :

+ ~~ xp ( -i~~/ 1 4 )  ~~~~~~ e x p( - l n p)  
- ( ,

~ It )
u—(a , p) ~~~~~~~~~~~~~~~~~~ 

‘~“i!1, n
3/2 + 0 [o ~ • -

Expansion for small p:

U
’
~
’(a p)  = ~~

‘ ln[l + exp(—ip)I + [in L + 1 — y — _.ll] + 0 [pa ] (2.14 )

U(a , p) = ln[p (1 + a ) ]  + - [in + I - y - ~~
] + 0 [pa ] ( 2 . 5 )

W~~~t~te~in ’-~ d~~~n,act_~on ~anct~on , app kox~ànated [ 2 0 , 2 7] .

For large p the main c o n t r i b u t i o n  I.e l t d  i n t e g r a l  (C.i) arises from

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the vicinity 01’ the saddle point u = 0. Thus, neglecting all terms of order

u2 [27]:

~~ (a , p) = 2;! J l n [ 1 + exp(-ip - Pu2)] ~~~~~du 

a 
(2.6)

The difference between and Ut is of o[p I ’j uniformly over the range

—1 <a < 1.Letting p = 271q and ~~
‘a = s (and using the same symbol Ut):

u~~s, q) = in [ 1 + exp(-2~iq 
U 

( 1  - I )s

which is the expression given in [20]. Tables of (the complex conjugate of)

U are referred to in [20, 28] .

Properties:

Same as (2.2—3 )

Ut(s , q + n )  Ut(s, q) (2.8)

U
4’
(s, q) = U ( s , q + ~

-) (2 .9)

Expansion for large 5:

exp(—i’nn/14) (2m — 1)!! exp(—2’ininq)
U(s, q) = 

. ~~m m + 3/2 =
v’~ Tr s m [s exp(—inn/14~ 0 ~

exp(-i~~Ib) e x p ( - C r i n q )  -

= — 

~~~~~~~~~~~~~~~~~ 

+ 0 [s~~~] (2.10)

Expansion for smal l s and q:

Ut(s, q) = ~~ln2 + 0 [sI (2.11)
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- 1 .,i •L l (s , q ) = —~~’(int; ~~
_ i - ) + l r ( ; + ~~~

it -,I( l ) + f l [~~] ( ‘ . 1 ’ )

l~ tn1:~ k’ l une U ct ’n.~

1 (2) x 1 10 ( x )  = —~- arg[H (x)] = — — 
~~
- — 

~~
.-— + . , ,  

~~ .H

T~ (x ) = -~~~ arg[142)(x ) ]  + = + + 
~~
-

~~
-- - , . .  

(2.114)

a = - ~ arg [H
(2)

(x)] = [x - ~ + 
m 

(2.15)

T
m 

= — ~~arg[H
(2) (x ) ]  + ~~‘ =  

~~
‘ [x — 

2m+ 1
~~r + rn~ — 

~~
, ,  (2.16)

In-tegkaL~

‘IT
2i j  sin(xcos~~)cosn~ d~ = 2iriJ

1
(x) (2.17)

‘IT
2 f  cos (xcosn~) d~ = 2irJ (x) (2.:~~)

f
[ex~ ( ixcos~~) + (_)mexp(_i xcos~~)] exp(im~ ) d~ = 

f

2T 
exp (ixcos~ )exp (im ~ )d~

2Ti
m
Jm

(x ) ( ‘ .19)

f  [exp(ixcos~~) — (_)mexp(_ixcos~ )] exp(im~ )cos~d~ =

j 2
~ = 2TI

m + 1 ‘Tm + 7
( x )  

~m — 1~~~ =

= _2~~m + I 
~~~~ ( x )  (2.20 )

_ _ _ _ _ _ _ _  
. - . —~~~ ‘- ~~~~ --.-—- —- - - - - -  
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f  [ exp(ixcos~~) — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =
0

211 
J 7 ( x ) + J  

1
(x )J exp(ixcos~~)exp(im~~)sin~d~ = 2111m m + 

2

mJ (x)
.m m

= 2111

feos~~~~~
2 uy)dy = 

~ 
C ( -~~ ~~) + ~~ 

(~~ - ~)] (2.22)

fsin (2~Ar
2 

— uy)dy = ~ ( — ~~) + sin S 
~9i 

— ~)j (2.21~)

where C(x), S(x) are the Fresriel’s integrals .

Fn,e~neL ~Ln-teg ’uzL4 and auxLL&t~y ~anc,tLon

C (t )  = 
~ 

+ f(t) sin!~

__ 
— g(t) cos~~~ } (2.214)

S(t) = ± — f (t) cos~~— — g(t) sin~~~-] (2.25)

where f(t) and g(t) are the so called aax L~v~j ~unc-t~on4 , and plus and minus

signs apply to positive and negative values of t respectively .

f’(t) = — 11tg(t) ; g’(t) = 11tf(t) — 1  (2.26)

Fort+0+

1 2 1f ( t )  = - t +... ; g(t) - t + ... (2.27)

F o r t - ~~+°~’

1 1 1 1
— — — +... ; g(t)~~ 

— — —‘- + ... ( 2 , 7 R )lit 
1T

3
t

5 
~t

3 
~~t

7

f (—t ) = f(t) ; g(—t ) = g(t.) (2.29 )
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WE] NSTb: IN ‘ ~30LI II’  iON bOR TI] K I”ARAI LF: I P t  N 1: OP E N— EN DE D WAy EGU 1 DE

The problem of radiation frum an open—ende’d parallel plate waveguidz

has been rigorously solved by Weinstein in 19148, ( resul ts  are referred to

in [20], Ch.I1, and independently by Hem s [29], essentially by applying

Wiener—Hopf techniques. Solutions to this problem (and also to the case of

a circular waveguide) are referred to in a number of books [30—331. Here—

after , Weinstein ’s solution is suznmarized~
’
~~ with reference t.o Fig. 3. In

addition , only ~ak-~Leid6 and -11/2 < 4 <‘ ‘ni/2 (~ ‘tont space. ) are consider ed ,

where the latter condition can easily be relaxed .

Fig. 3. Radiation from an open—ended parallel plate waveguide.

(+)Note that, in the original Weinstein ’s solution [201 (i) the assumed time

~ dependence is exp(—htt), (ii) the :‘.-axi s is pointing toward the waveguide ,
(iii ) the unit system is the gaussian one and (iv ) symbols are slightly
different from those here adopt ed . 

-~~~~~~~~ ---.-~~ - _ _ _  _ __ _
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F -r an incid ent. TF wave (no x—v :triat ion ) the 1’ht ’l1~ can he d e r iv e . ,

via (1.6—7), from a vect or pote n t i a l  A = A~ who ro~.

for n odd :

exp[—i ( Bp + 11/ 14) ]  cost cos(B asiri4 ) 
+ +

A = ____ exp ( U — U ) ( 3 . 1 )
CO S -1!. Co s43 — CO S4~ 

n

for n even:

icJ exp[—i(Bp + 11/14) ] co4 sin(8asin ~~)
A = exp(U - if)  (3 .2 )

CoS~~~~ COS I ~I — COS I~I

In (3.1—2) the angle 4 is related to the waveguide propagation constant B by:

B = -~~~ 2 
- (n11/2a)2 = BCOS~

j = J~~ in the £nc.,~dent 4wk~ aC,e ew~&ettt at z = 0 related to the incident

electric field at Z = 0. E = E x,by:
~~0 0

E sini~
j  = 

0 fl 
, lower rim, (3 .~~n

n+ 1¼ )  E sm ut
J = ° ~ , upper ritz,
n ic

U--(s, q) is the Weinstein diffraction function (2.7):

Ut(s , q) = U~ ~~~~~~~~~ ~-~~) , (3,~~)

and

U~ (s, q) = U~ ~~~~~
‘‘j’
~
, k) , (3.7)

- ~- -- -~~.- L.
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Results (3.1—2 ) are app~’wwna.ted onZ~j because the approximate ex-
pression (2.7) for Ut has been used. They become exact if the exact expres—

sion (2.1) is adopted with a = cos~ , p 28a. However, ever for moderate

value of Ba, the difference between the two formulations is negligible save

in the neighbors of ~ = 11/2, where it remains small.

For an incident TM wave, the fields can be derived from a vector po—

tential A = A’~ where: 

no

for n Odd: -~~~

I .
exp[—i(Bp + 11/ 14)]  cos -

~~~~ cos(Basini~) + +
A = ______ exp(U — U ) (3.8)W ‘42’nrBp cos ~ cos~ — cosut -

for n even:

gJ exp[—i (Bp + 11/4)] cos -
~~~~ s in (~~asin4 ) — —A = 
‘I’ 

exp(U — U ) (3 .9 )
‘\f~itBp cos ~ cosq — cos~ 

n

where U~ is again given by (3.6) and the LncAden~t 4wk~ace c,a.k)Len.t J =

at z = 0 is related to the incident magnetic field at z = 0, II = H~~, by:

J = H~ , upper rim (3.10)

rL 
= (—)‘~~~H , lower rim (3.11 )

Solutions (3.1 , 2, 8, 9) deserve a comment . For 8a large, use of (2.10)

shows that:

exp[U~ — = 1 + o[ 1/ ~[~~] (3.12)

~ccordingly, the left—hand side of (3.12 ) is an £~~~~ac~~on ~ac~ok which

approac hes unity when the spacing between the two plates is large .

Let us momentarily neglect this factor . It is immediatel y recogn ized

that the fields are proportional to:
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11.

ex p [ - i ( B p  + 11 - 14 ) 1 1  ~‘ns~- e x p( - iB p ’)  ± exp(-iBp ” )
(~~.i~~)

(‘05 I ’O 5~~ — ~‘(‘s~

for the TE case , and t o

exp[—i(Bp + 11 /14)] exp(it3p ’) + exp (—i8p ”)
cos -

~~~~ sin —— 
—
— (~~.l14 )

cos~ — cos4

for the TM case. In (3.13—114), the plus si gn applies to n odd and the minus

sign to n even. The total field is then obtained as the superposition of two

cylindrical waves coming from the upper and lower rim of the guide respectively .

When the expression for the incident current (3.14—5, 10—11) is taken into

account, the similarity between (3.13—114) and the metal half—plane scattering

problem [314] is immediately recognized . Each constituent component of (3.13—114)

coincides with the asymptotic evaluation of the field scattered by a metal
il-

i

half—plane when the incident wave is plane, at, an angle • with the two rims

respectively ~iud with polarization E F0 ~ 
(TE case) or 11 H

0 ~~
‘ (TM case).

This is obvi ously consistent with the sp l i t t ing  of the inc ident f ield in a

set of two plane waves at angles 
—~n 

with respect to the z—axis. The above

similari ty has been recognized from the beg inning [20] and is the basis for

all quasi—optical approaches to this problem . There is , however , a profound

difference between the half—plane problem and the one at hand, and this has been

so far apparently overlooked . Each con4Utuen~t Wun in (3.13—114) d~ve,~ge4

at~~ = u~ (lit—shadow and lit—reflection boundaries respectively ) while the

to~t,a2 ~.Le,Ld doe4 no~t. Consider , for instance, (3.1). When ~ = q then

Basin~ = nTI/2 and is the normalized eigenvalue of the parallel plate guide.

Accordingly,

cos(Basinq ) 
~ 

Bacos4
lint = ( 1) fl_ 

~“ (3.15)
4-~ t COS4I — C0S41 sin~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _
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and is finite. The reason for that is very basic and quite general . Consider

the sketch of Fig. 14 where ray tracing is dep icted for the parallel plate

guide .

/

Fig.  14 . Ray t racing in side a paral lel-plate waveguide.

roints C and E, as well as G and F, arc on an equiphase surface~ accord ing l y .  
I

S

the phase delay along the t,wo paths GHIC and FE shou’d differ of an integer

n unber of 21r (eon4 ’.4tencnj keZn.t~on41up , t h e  op t ica l  analog of f ield  d i spe r s ion

equation). Consider now the phase delay a l o n f ’  t he  two pa ths  CBP and EDAP . The

phase introduced by the scattering process at A and L does not - depend on t h e

anCle , so that it is equal for t,he two pat h r .  However , the usal phase delay

-

~ 

‘. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ --- - - 
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t t ~

of ~ at A (due to the r e i ’ ic~’t L e n )  is ~~~ ~~ sre-1 , ,;inre the “ ‘ “ e r tj e ’~ c. —

et” f i c  ient is suhst. I tut .ed by a r ’ a t  t en’ i  ~~ c o o t :  i ’  l ou t  . Acco rd  i n g l v  , the

two ray contributions at. P from L and A are oppoc it c in phase.

The following conclusion can be drawn . For the h a l f — p l a n e  d i f f r act i o n

problem , the spectral components of the sca t t e red  f i e l d  d i sp lay  pole s ingu—

larity (in the wavenumber space) which approach the saddle point position

at lit—shadow, lit—reflec tion , so that the steepest descent method evalua tion

( performed in the usual way) becomes invalid (resort should be made t.o t-he

Pauli—Clemmow modified steepest descent method of’ in t egration [ 3 5 1 1) .  On

the contrary , t hese pole singular i t i e s  cancel each oth er for the probl em at

hand , so that the usual asymptot ic  form for the  sca t t e red  f ie ld  is val id

through all space.

The interaction factor (3.12) is now cons dered . Use of (2.10), valid

for 2Ba cos~~large , shows that :

+ + exp[ —i ( 28a + 1 1 / 1 4 ) 1 1  cost — ex p (  — I 2r~~a)
exp (U— — U—) = 1 

~ ____ 

11 
- /

~ bir Ba cosqcosq n ( ni  + 1) ‘ ‘

+ 0 [ 1/ ~3 a]  ( 
~~~~

I 

_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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When (3 .16)  is substitut ed in to  ~~~~~~~ 8— 9 ) an ex t ra t o r n  :tpp& ’:o’s for  the

vector  p o t e n t i a l  A.  This  row em can be easily / , m r t n ’ u c t  ed u s in g  t h e  model

of interac t5ion process dep icted in Fig. 5 (~~ng~e ~.,n..tckaction
’t , The ray

along BC explains the term n = 0 of the series in (3.16); and the remaining

terms of the series are due to the nonun i f o r m  i l lum in ation of the edge. For

future reference it is importan t t o  recogniaed that 2iiq 23a takes care of

the pha se delay of the ray path between t h e  two eJ~~er .

When 2Ba is small, use of (7.1 4 — 5 )  shows t hat :

exp (u ’
~ — U’~

’) ~ 1 ( 3 . 1 7 )

Cos
exp (if — U ) =

n cos —

Fig. 5. Ray opt i cal descri pt5ion of the inter act ion process.

. 5  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 
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C HAPTER 14

THE EL~~~NTABY SCATTERING COEFFICIENTS

The field radiated by an open—ended parallel—plate waveguide has

been represented , according to Weinstein ’s theory ,  as the superposi tion

of’ cgUnd’zA wL~ Wave4 from the rims of the guide. The main idea is now to

represent each cyl indrical  wave as superposition of e~enen-tait.y .~phe)L~LcaL

ukwe4 radiated at each point along the r im.  This goal can be accomplished

by noting that , asymptotically as B~ -~

exp[-i(Bp + 11/14) ]  f  exp(-iB ~~~2 + ~ 2)
—2TriF(0) 

_____ ~ I F(~~) ______ (14 .i)
J

Here p is identified with p ’ (p” )  in (3 .1— 2 , 8—9), ~ with a curvilinear

coordinate along the upper (lower ) rim of the parallel—plate waveguide ,

— ~~~~~~~~~~~~~~~~~~~~~~~~~ r is the radial distance from rim point to field point and F(O)

can be immediately obtained by inspection from (3.1—2 , 8—9).

The next step is the determination of F(E~), which should coincide wi th

F(0) times an arbitrary factor which reduces to zero as ~-~‘O. This fa c t or ,
I

in general, will not play an important role when applications are made to

~~~~~ apertures. As a matter of fact, superposit ion of elementary rad iation

from the rim of the aperture will result in an integral , and in the asymptotic

evaluation of such integral the above factor is unimportant . Only the

(cosq — cosq ) term appearing in the denominator of ( 3 .1—2 , ~— 9)  should be

handled wi th  care to avoid a singular behavior of the elementary sca t te r ing

coefficients which are going to be introduced . .

As a conclusion , the following An4a.tz w i L  he made.

.5- -,

~ 

--- - - - -  ___ _
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Consider an open ended waveguide ubvL~c~un along the z—axis. Choose

two points Q, Q ’ on the rim of the waveguide such that

(i) the tangen~t p~ane.4 to the waveguide walls at Q, Q ’ are pa.’ULUe ~~~; the ir

distance is 2a;

(ii) the -~ncA..den.-t .o u.X~~aae cwVLen~t4 .1,,, ~~~~, parallel and perpendi cular to the

rim , have equal amplitude at ( Q,  Q ’)  and either equal or opposite sign .

Then , with reference to Fig. 6 , the following elementary vector potentials

are assoc iated to the elementary currents dJ ,, = J ,,ds , d~~ = J , ds respectively:

P
0

/ I *
I, -

-
5
--

F ’ i 4 ~ . t • U ’ - ine t .ry  u t  / 1 / m e r i t  a r y  r a t  m t  ion . 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~ -- 
_
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dJ ,, e x p ( — i  ~r )  / ‘or 
~ (‘X l) ( ~a~~m L~ I / ~~~) + e x p ( — I  ~~.- ‘~~

‘ i n O r i : i~~) - -
= i. — —----____ , 

~~~~~~~_ _~~~~~~~~
_ __ _______

— 

—1W .~ Iir I ’or l — ~~~~~~~fl O r I l I~~~~ —

+ +
ox P ( ~~

— — ii—) . -g

0
dJ , exp(—i8r ) cos -

~~~ ‘ exp(i8asinOsini~) + exp(-i8asinOsin~~)
dA = ~~ _ _ _  

— . L
2~iir cos \ f Os~~~

’
~
’ — COSO

g 
H

exp (U-i — U±~) (14.3)

In ( 14 . 2 — s )  the choice of plus or mi nus sign is related to equal or oppos ite sign

fo” th e inc ident surface current at Q’ , Q” respec t ive ly ; the angle 0 is

given by 8 = 8cosO , where 8 is the waveguide propagation constant . Note

that 7BasinOsin4 = r ’ — r”I and that the elementary vector potential s ( 1 4L~— 3 )

are everywhere finite provided that the dispersion relation

ex~ (i8asinOg) ± exP (—i8asinOg) = 0 ~~4 .1 4 )

is valid.

It is obvious that application of (14.2—In to the case of a parallel

plate waveguide using the asynipt ot ic ’ evaluation (i~.i) of the superposit i o n

integral gives ( 3 J — ~~) and ( 3 . 8 — 9 ) ,  r ’ e r ; I e c t iv e l y .

-- ‘ - - -A  
_ _ _ _ _ _ _ _ _ _ _ _
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CIIAPIER 5

RADIATION l’ROM OPEN EN DE D C lHC li  LAR WA V P~d 1l 11 ) 1: . AVS Y M1 I I L - \  .1 Y UY~~dFTR if  MOl) ”~’,

4 
Consider now an open ended ci rcular wavegu ide as dep icted in Fig. 7.

The guide is excited by ~~~~— independent modes izqmu-thaUy~~jmme5tfl-i-c mo d e A) ,

an assumption which will be relaxed in Sect. 6.

p(r~8~~)

/ 1
/ 1
/ / ,JI r

/
I ~z~1I~~~

x

/

I % .~~~~ — ~“

Fig,. 7. Radiat i on from ~tn ! ‘ i I_ ’t l Ii C l  r I - I l l  - ii ’ w ave fiide .

Li ., ~~~~~-. - - — -
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a I’M I r u ’ ij e n l .  cno te t lie riir ’ t ’:Ace ‘ i i t ’ r ’ t ’ r i t  i n ’  i d ’ n t  on t h e
no

iris onl y ri ~-~
_ ( ‘t i i T I i Cr1t ’ t I t  , J .1 . ; t I n e  i t  si/ ~’i’r I~~~n t  rei :t t. l / ~ t l  I

J (k a) = 0 ; Ic = ~si nO
0 t t

the distances from Q’ , Q” to P are f iven by

r — asin0cos(4 ’ — 4) ; r ” r + a s i nOc o s(4 ’  — ~
) ; ( 5 . 2 )

the appropriate elementary scattering coefficient is ( 14 . 3 )  with the plu4

sign , since surface currents have the same sign at Q’ , Q” . In conclusion ,

the total vector potential A = A”~ wi l l  be proport ional  to the following

integral :

J 

cos[8asinOcos(~~’ — iv ) ]
d~~’. (s.~ )1 —  sin 20cos2(~~’ — ~~) “ — cosO

g

When 8asin® is large the main contribution to the integral (5.3) comes from

integration points close to ~~
‘ = ~~. When s i n O < <  1/8a and 8a is large , the

cosine term in the denominator of ( 5 . 3 )  does not play a significant role.

Accordingly, we can put q’ =~~ oit~g £n -the denom.~natok of (5.3) and evaluate

the integral (5.3) with the aid of (2.18). When a l l  terms are taken into

account , the t’inai expression for the vector pot .ent ial is :

0
ci a exp (—i 8r ~ cos—4 J ( $asinO ) 

+
A = - _____ — 

(-
~ 

0 exp(U 4’ 
— U ) ( 5 . 1.. )

— 1w 2r con ~
— cosO — cosO g

C

Note that  the vector potent ia l  is eve’tywheite ~iJ l~tc in view of the d i spers ion
‘I

relation (5.1).

We still need to specify the values of s and q which appear in the

Weinstein fun ct ion IJ~ (0.7). It has already been noted in fec. 3 that .  f lT ii

should equal the phase delay between int ei’a’ t HIC points on the ed t~e , such as

Q ’ and Q” . In this case of’ circu lar symmetry , t li , - line ,i o i n i n g  Q’ and i~
”

L. ~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  -- - - 5 — ’ -  ,-- ~~~~~~~~~~ -~~~~ — -~~-
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intersec ts the axi s of the gui de, w h i c h  is a c~t t e t  1 . ’  l i i i - . A cc nr din 1~~y,

the usual phase delay of 11 ~‘1i should be added , so I hat  I Ii - va~ aes of 1J~ t o

be inserted int.o (5.14) are t-he following :

— 11/ 14

U~
’
(s , q) = U”~~

’
~~~

’cosO, 
TI 

(~~.5)

U”(s, q) = U~
(.
~i’~~
;’cOS0

g~ 11 
(5 . 1)

Expression (5 . 14 ) co~ôie~4eA with the exact solution to the i-~~~L - ~r. [70~~,

with a minor modification in the q parameter of th e funct i on U ’
~
’
. ~~~

to Weinstein , the proper value of q to be inserted into (5.5—6 ) is:

q = iarg[H ( 2 ) ( 8a ) ]  (~~~l . 7 )

while in (5.5—6 ) we have:

— ‘fT 14

II 
(5 . 8) S

L
Use of (2.13) shows that the di ‘ I ’e r i - n i c e  bet WeeTi  (5.7) an~ ( ‘ / . I t ’ order

1/8118a.

The TE inc iden t  case can be s i m i l a r l y  tn’cate h The cu i’ :’a -e —no

on the rim has only a ~ component,J =  J~ ~
; the dispersi on relation is:

J ,(kt
a) = 0 kt = 8siflO

g, 
( 5 . d )

The appropriate elementary scat t,eT’inf c o e f f ic i e n t  is ( 14 ,2 )  w i t h  t h e  ~~~~~~~

sign , s ince surface currents  have opposi t  e S I Cr1 at Q’ and Q”. The t -  m en—

tary vector poten tia l  dA due to the t w o  r i m  ci n-m ~-n t  c a d ~ aI .  Q’ , ~~~
‘ c:i ri U. ’

resolved into two components:

dA = ilA cos(~~’ — — iAsin (~~’ —4 )~ x ~, (‘~.i0)

parallel and normal I o respect ively. It is ‘1--il I ly seen tha t .  the i rtt . .- 1 . n’al

of the latter component. is equa l I I ) ~~~~~~ I - i ’  0, wh i  1 . -  I l i -  n ì t  - t ’.ral of the  former

- .  -‘ -- .
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gives for  I -he tota l vector p o t e n t i a l  A =

J ~ a ~xp(— i 8r) cos~ .1~ ( l~a i n i O )
A = — j ( . —~~~.-—- — — — —  — 1 t )

— 1w 2r cos~~ rosO — cosO

Note that the vector potential is everywhere finite due t o  the dispersion

relation (5.9). The function U should be computed for the same value (~~.8) of q.

Expression (5.11 ) ao.-Lnc~de4 with  the exact. solut ion to the problem [20],

with the only minor modif icat ion :

q = - ~ 
~~~~~~~~~~~~~ 

V .12)

Use of (2.114 ) shows that the difference between (5.12) and (5.8) is of order

3/8i18a.

— r . 
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CilAI ~ fU

RADIATION FROM OPEN—E ND E1. D C1I ~( ’IC~Ah W$~ ‘ . 0  1:1- 0 - ‘~~~~~~ , .LL :

AZYMU THALLY ASY~ .IETR1C MODES

Radiation from an open—ended circular waveguide is now considered with

TE or TM excitation , wherein the ~—dep endence of the fields inside theam am

waveguide is of type exp(im~ ). The analysis is more involved , although the

procedure parallels that for TE or TM excitation .no no

First , TF mode exci tation is considered , wherein the surface current
nm

incident on the rim,J exp(im4 ), is:

mcosØ
j = j ~~~ +j ~~~ , . = —  , (6.1)— Z Z 

8asin 2 og

and the dispersion relation is:

J’
m

(1ct8
~ 

= 0 k
t 

= 85lflO
g~ (6.2)

The component J of the incident surface current produces a vector p0—

tential, A 1 A 7 z, which can be computed by u s i n g ,  ( 14 . 3) ,  ( 5 . 2 )  and (2 . 19) :

0
cJ a exp(—i8i’) cos—~-- J (8asinO).m z , . m + +A , exp ( im ~~) e x p ( U  — U ) ( t ~~~ )

o C
—iw 2r cos-~— conG — cos®

where

+ + 8a — i r / 1-’ — m Tf / 2
U (s, q,) = U (~~~~~

‘cosO , ) ( ( - .11)

Note the expression of q in (6.14). The t erm — li/in accounts f// F’ the phase

delay at t,he caustic line crossing on t h e  axis  u l ’ the guide. The extra term

m’f1/2 taken into account. the equal (m even ) or oppo site (m odd) siCt of .1

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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at Q’ , Q” (see Fig. 7), as follows upon use of (2.:-9).

For the vector potential ~~ A~~ — A~$ x z associated to the component

J~ we have, upon use of (14.2), (5.2) and (2.20—21):

~~ 
t~~~a exp(—i8 r ) cos-~— J (8asino) 

— —

A~ = 
.m 

® exp(imq ) 51 exp (U — U ) (6.5)

—i W 2r cos—~—- cos® - cos®
2 g

cJ~a exp(—i8r) cos~ 51 Jj~~~sin® ) — -

= _ 1m 
o exp(im~ ) 

“ exp(U — u

—jW 2r cos.f 8asin® cos® — cosO
g

(6.6)

— 
8a — 11/14 — mir/2

U ( s , q) = U (
‘
~~

“ cos0, 
11 

(6.7)

The transverse components of the vector potentiaL A~ and A~ , are given by:

A
4~ = A~ ; A® = A~ cos® — sin® (6.8) ‘l

.m+1 ~~a exp(—iBr) cos~ J’(8asin® ) 
- - IA = —‘ ~~~

—  exp(im4 ) exp(U — U ) (6.9)
—iW 2r cosO — cos®

g 
g

JAa exp(— 18r ) 2cos~ J (8asin® )
= ~~~~ 

~ o 
— exp(im4 ) m (6.10)

—jW 2r siri_~. sin® sin®
2 g

= .~BL.. (6.11)
28a

where U~ is given by ( 6 . 7 ) ,  use has been made of’ (6.1) and only terms up to

order ~ have been retained in (6.10).

Expressions (6.9—10 ) are now compared to the expansion of exact results

[20]  up to terms of order A 2 included . The ~—component of the exact , vector po-

tential equals ( 6 . 9 )  t imes , 
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a / I + i’050 0

provided that  in ( 6 . 7 ) :

q = -
~~~ arg H(2) ($a ) (6.12)

The O—com~onent of the vector potential equals (t~.i0) times:

1 — = i +~k~~~~
cos 2O

F 
(o.l~~)

Use of (2.16) shows that the d i f f e r en c e  between t u e  two  values of q is

small provided that 1~a is even moderately 1ar ’ t~e compared to unity. The

conc lusion is drawn t hat u-se o~ c nneitta.~y ~catte ’untq c’e ~-Lc~cn.t.~ (in .o— ~ )

£~ad-~ ~o good u.U~ p~’tovi.dc.d tIta~t k~
a > m and the cx c~ ta.t.~c’n Ls TE .

Let us now turn to TM modes , for which the inc’ident surface currentmm

J exp(im~~. has only a z— component,J = J:~,and the dispers ion equat ion  i s :

j  (k a) = 0, Ic = ~sinO ( t - . l ~~m t  t g

Then , use of (14 . ~) ,  ( 5 .2 )  and (0.19) will r’esi:tt in a vect or ’ o t /O t i:ii

A = A~ riven by (b .3):

A = A
1 (1/ . l~~ t

This vecto r  p o t en t i a l  w i l l  prey I i . - (~-:~ , i i ~~) f i  el d~~~ -o r t  I y, ac~’o r ’ i i  rig t e ( .t — ‘1

whi le  the exact sol ut~ion [ oO] pt’ ov i des  (E0, i~~ ) and (i- ’
~ 

ii ~~) t’ie is as w el  I .

Comparison only between electric fie ll: ; is n/ - / -essar’y , s in c e  II =

The exac t express ion for’ t h e  H
® 

f i e ld , tj -  1,0 t e rms  ,\ “ inc ‘~ 
- : 1 -  ; , is t L-

H following,:

m exp (i~ r )  
+ +1

0 
= — i (j ;E 2r ex p ( im ~i )  ‘ X 1 1 ( P  — u

r 0

L 

~~~~~~~~~~~~ J (8is in0) I ’os~’-’ of V-~ I n r (  I)  
~

. ; i r n O  — ‘ —
~y’— — — ~~ ~I

( “OS~~ cosO — ‘0 ,~ cos~~~ ~‘n; mu i ) ~:n 

- - - .5 -~~~~~~~~~~~~~~~ -. - -----5--- .-~~~~~~~- -5-- - ,
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where the argument. q of true tun st ,~un LI is ì~~ven ny

q = ~~~arg[H
(2)

(~ a)1 V .1”)

As for the TE case, difference in t h e  wo values of is negligible as shown

by (2.15).

The ~~~~ -te.’un £fl (6.16) is eiac-t~y pkcd.~cted . The -~eeo~id tvnm , whi..ah

.L~s o~ on.dek (m/~ a)2, L~ not pked-~icted -~t nI l .  This term is important only

for m = 1 since , at variance with the on-her one , is di f t’eren t from zero

for 0 = 0. However, the ratio of the f i r st term to the second equals :

(2t~a\
2 ® 2 

(6.18)

for small values of ,~~ , so that the f ir st term d .-~niinates for

51 0
Ø>._ ._ . tg —i

2$a 2 V.19 )

The exact expression for the unp~~d~c~t~d I~ — c o r n i n ~~) n e u u t -  of ej e c t r ic  t ’ie l .i

is , up to terms of crier’ A ,

exp (—i8r ) .1’ (8asinO
____________ 

a -
= i gJ a exp (1m4)) A (i— .0O)

Z ‘. “I
2r’ c o o  —

~~— ‘  ‘c ’. — —

The concl nus ioru i s  drawn that , ~c’~ TM QkC { tat~~’it , U~~ C O~~ ~~‘~itn& ’i n t a ~ ii ~ ‘f t-

t~~~ng co~~~~c~e~~~ ( 4 . 2 - 3)  £ead-~ to good ~cMte t-~ ov~ded that 8a/m > >  1

discrepancies with th. I 5 X r t - U express ions  for the ‘jel ls i u ’i s e  -
~~~y in -t

smal l angular reg ion centered at 0 = 0, for m = 1 ; aol , in the case / 1  1 irc-;tn ’~~y

t’olarired excitati on , l ’nu ’ I he c ro ss—polar ized / ‘ )nl t ) n n / - r l t  /1 ’ the field. A v-u - .’

to overcome these inconveniences :~ given in section 0.
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RADIATION FROM OI’i:I h :i i-;:~— l-;;inh-; p fIll1 )I .~-f • ‘iK (S ’fYUhEO

Some other open—ended guiding structures will now be considered briefly.

The vector potential associated t o  art open—ended cc’axA.a-e c.czbA~e of outer

and inner diameters 2a,2b respec t ively can be easily computed using (14 . 3 )

and ®
g 

= 0 for TEN excitation . The final result for A = A~ is the follow ing:

— i8r J (8asinO ) — J ( 8b s inO)ci e 0 0 o — —A = — cos~ - exp(U — U ) (7 . 1 )
—i W 2ir r sin 2 ® 0

U(s , q) = U (~~~(b-a7 ’~ s® , 
8(b-a) 

(7.2)

Note that G is the angle with the cable ax is , I i s the total inciden t curren t

and only interact ion between inn er and outer walls has been considered.  ~her ;

~a << 1 (~smaL e cizb1~ ), eq. (7 .1)  t ransforms in to :

A = ~‘ ex~ (— i 8 r ) 
82 . 5 — ~J ‘x1/(—i~~r )  {_ I ~~~~~~~ V - 1— 

— 1w 8ii r ~~

‘ — 
1411 r , ‘~~ 

‘

where C = ii(b2 — a 2 ) i n  the aperture rise - i ‘te l u s . - I~~~u~~ to- - r u  mn - Ic  of (3 .  j R )

Equation ( 7 . 3 )  shows that the  cable apt - s t u n ’ ’ is  o n ;  i v : i l  Otul t o  -
~~ :— i r- ’. - —

ted electri c di pole of merest- \!tJL ’I J  271 . T h i s  is the c xac t val~~,- vs H-I . is - cnn — I
puted assuming only the e le c t r ic  i c - i  : (~ wice as hi  is t e l ’  ~t . 5 n :. ‘ on. - )  ¶ -

e.ist across the aperture ond then ap p ly in c  1 ’  , - r u i v a l , - e ’ r  ~~ ‘ S r  [ 
~~] .

For an open—ended -6 tf l.A.p t~~ne of w i d t . h  b - te . ;  /“cn i i .~~ -~‘n ’ s o - ’ its ’ Onì , -“  -

H— 1 lane f ield can be easily c I m I I u 1 , r ~~ u ~~ uu ~ ( U  . ~ ) (1 .6) as-I 0 = 0 ( ‘“1- .’- ’ - I —

ta ion). The final r ’:rnt i s  I t;. - ‘ / 1 .  w i n g :

_ _  _ _ _ _ _ _
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- - : 1  , - 0 i nu ( 0:15 h u b )  , — . - I= — I . s . X h I ( _ 1 U / t ’ ) c-~s-— - ‘— , - x l  — ( I  ) 
~~~

, . . )
15 I’ - StIl t) 5

= E
0/ c (~~~.c )

U ( s , q) = U ((:~L~- t’ cos® , ~~) (7j,)

where I is the total incident current. Expressions (7. U_ 5 ) are c o n s i st ent , in

the low fre quency case , with application of the equivnuie rlce theorem , as in the

case of the coaxial cable.

Equations (7.14—5) do not depend on the stri p width. Accordingly they

are valid also for an open—ended - o-W-~.’i~ ttan~rn-~ i~ - tt  ~~oe .

The radiation from an open—ended rectangular waveguide can air’s ho c s n n —

puted. Results are in goo-.i agreement. wit- h cxpe :-iment .nnil oat a. i’luo ,y are not.

quoted her eaf ter  only because some f u r t h e r  : ss : sn iu t  ion is ne -0050 ry in t b .

scat ter ing c o e f f i c i e n t s  ( 14 . 2 — 3 ) .

The coaxial cable , the  s t r ip and the  t w o — w i r e  t r a n s m i s s i o n  l i n e  are non—

dispens ive gu iding st ruc ture s, when excited under lilT cs-n lit i ors . ~cc - n - l i e - -I;. - ,

a pulse is not distorted while propagating alert - t fl -si- gel :~-s~ Hey Ore t H~

simplest suitabl e pu~4C flad-&to’t4. T r a n s i e n t .  r od’ i :u t  ion from t .be:e c r u f i g u _

ra t ions has been given in ~O6, 36] neglecting tne inter action ~n c t I : r .  F o u r i e r

inversion  of th is  fac to r  in the t i m e  d orn , : i in  is ;ue c€ros : l r ’ y  for  a complet e a r unt —

lys is  of t r a n s i e n t  r :i I t a t  ion  p rope r t i e s  sf the .~~~ u-is- tar -s prey i ~cns  I y :0/ t I  I y :o ’I

_
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ThE INCLUSION OF A FLARE ANGLE

For the applications vi ewpoint , it is highly desirable to have scattering

coe f f i c i en t s  which can be applied to ~1.aAed open—ended guiding structures ,

such as a horn. Unfortunately, no exact solution exists for radiation from

a flared parallel—plate waveguide. However , there is a way to bypass this

difficulty.

Consider the sketch of Fig. 8 where the terminal section of a flared

parallel—plate waveguide is considered ; let a be the flare angle. The field

distribution on the mooth z = 0 of the flared guide will be different from

that of an unf lared p~ ral1el—plate guide with the same mouth dimension 2a

at z = 0. For small flare angles , however , this  d i f f e r ence  is ~ust a pha4e.

eliJtofl. due to a change in path length:

Fig. 8. Radiation from open—ended f 1 : l t ’ eI i  pat-n i l l e i — j . r l l . e  wavegui/Ie.

H
I 
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r cosu~ a a /0551 a / - .‘ , 
. 

- 
-

A = r — = , — . - i 1_ \j. nnec 5.. + ( s’— .- Si SA L.. ,
COS~ J s ina~ Jsin ,I IO .s. c’. 511151 , V

~J_S~ n~j,, (1 — ~~) (~~.i)

where the only assuption used in the last ieri ’-snition is that sin 2a < < 1 .

According ly, the phase error across the mouth will be:

11 y2 B a l sin.ol
~ 2 (1 — — ) ,  - 2  — C (8.2)

2 a 2

where 8g 
is th e propa gat ion consta nt in th e fia:~~d guide an/i -~~ is a parameter

describing the flare.

The field in the half—space z > 0 can be r e p u’ e s e nt e d l  as the inverse Fourier

transform (in wavenumher space) of the field distribution in tl~e p ir n e  -z = 0.

We assume this field distribution to be coinciden t, with ti-ne fie~ .i distribution

relative to an an~1~cvtcd parallel plate guide (of mouth dimension 2a) t~~e4 Ct

pka4e eXXc ’-’t:

2
TT
y (1 — ~~~2) , —a < x < a, V . 3 )

0 > a (8.14)

Accordingly , the ftel~~ for :-n > 0 and , in p r L r t . i cu l a r , the far field , wl .il be

obtained as the convolution of the (known ) fb I/I r a d i : u t e - i  by the ( i r u f l n t r c - - u )

parallel plate waveguide and the Foan..~A t-~a~ns4 mu the compJ.ie.x ex 1,n u - o c u t u u

o~ (8.3-14):

= 
1 J ~ 

e x p ( i u y ) - l y + ~ 
~~~ a 

ex p (juy) ‘x~~~l ~ 
F.
z (1 - ~~)] i y

-~~~ -a

+ n’~~ 
e x p ( i u t y L ; y  ( 8 . 5 )

a

L _ _ _ _ _ _ _ _
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wIt, - ; - ,- ut i s I l / I ’ v— .’i/ntpor u ’nl( ~ u :~~ - , t t ,  i nt l ! , ‘ n ; / - I t , - \  O t t  - / 1 / 1 : 1 1 : :  u.;  t o ’ -  ‘ 1 g .

i t u ni I

rn p u t - n I l io n o I~ ( i t , ) I :  r a t  I ’’ I v i i  , , n n -i- ,  1 / -s - I o u n ; , 0 ( - , .~ —

The 01 : i i i  resul t  is  the  t o  ii :

= 
~ (u) 

- 
S s i n i o : ~ - [~-~ 

- 

~) expV~n) - : ( ~ + ~) -~- x n  ( _ i a )]

- 
I [~

(
~ : )  exp(i u-i ) - g(~~~ +s) ex~- . (_ iUa)]~~ (5 .6 - )

~ is small e i . (8.6) u -an  be sinnu p l u n n o l l  by expanding IC- ’ :~‘ .;xil ru n-y

functions f and in the eel glibo;-:: of ua/7r~ . Cs t t O  (2,26) we u ’Cl :

= ~ (u) 
- ~sinua  

- co snua l  [ i _  ~~t - i ~~ g(~~~
t
)~ = ~ (u) 

+ y(e) ( 5 . ~)

As a check , it cot; be note~: that , no r 6 -* 0, tfle Ire-I br -t ce ”- : i -r n in (5 .7

reduces to — ; ( v & /ua)2 , U~~Ofl use of (2 .26). Accor’siu~g y ,  the soconuo n~ - r - nr - 0 —

(8 .1) is proport ional  to ~ 2 and 4s r educes I’ a — fnunn ’t. b i t  fou r ~ = 0 , as I t -

should be.

The ru ’w - j ’ - t n ;- n u u u t , / ’ r i t i a l  A , 1-0 1011 v/ t . ’. ’ t he f l a n ’ u ’ :  t - . n u t ’ u i  lo l ~u l n L t e  W~~\’C—

a; i i n , is i 10’s by:

, , )  =f  - ( ~~
‘ ) A(-; — u~ ) ; $ = A(e ) ~ (u ’ ) A ( u  — ‘ • (C .5 )

W ; u - ’ r - ’ tn - - v~’ct.ur 1 / - t . t t i n i l  1 t’ i- I O I I V - n  0 tI/ I O n ,  - un - n anu’n ul ~~~ bt , t .u- :vs1 .,:nn~

g i , ’ ’ ~ lY~’ ( 3 .  — )  t n ~ 1 (~~. t i — C ) .

the ‘I i  : 7 / n o n u t , i n r t u u s  behavior (2. ‘t~_g5) ,f 0 0 o u s t .  i on  : ( r . ) - t n ;  / 1~ 1.

- ~‘n~~;g~ of t . i i . -  i i ;  I. - -gn’ :iI vi , I cu a ~‘ t - nt u- s in (8. iI ) S !I ~ ’ II be 1’- - - - in to the n -
~~

s i r - n:; C— -- . , o) on .; (0, . ‘) .  For l in e I n u i  t o ; ’ Wi have , qI e t i  r~ ’ t s ~n -  I in ’ - 1 ’rn t n / h  
*

ii~ j eu’ S n i t ;  I 1150 01’ ( ‘ . 2f ~u )  

‘ 5 - -  
- ‘ 5 - -  ~~~~~~~~ -—~~~~~~~~~~~~~~~~~~ - - ,- .5-~~~~~~~~~ .~~~~~ — - .-- -—

~~~~~~~ -—



- ‘ ,~~~~~~~~~~~~~~ 5~~~~~ rs 

~~~~~~~~~~~~~~~~~~~~~~ ~~~
-•,_

~~~~~~~~~~ - -. ~~~~~~~ - -

~~~~~~ - / t ’~~/ i 1 ’ = -~-J 
~~~~~~~~~ 

(~~-t - 
~~~~~ o~-Hj 

~~~~~~~~~~~~~~~~~~~~~~

I _ s 2 J [~~g(~~) _ i  
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N ow , the  bra ck’tu’/ i term upp r. /n - -} l er — n u n ; t’ ’ r r , n u n n s  -011 ’’ -tn~ n i S  t > nI5 n A n ’ :‘ r i  -~w:’

- 

~upon use of (2.28); there jun no se r io us  ~ r i~ n ,~d~ : r u u I  t h i s  I- . - r’- : a n - I ’ u ’ , ’x i m r n t , e y

constant .  Then , in t ’ : -e rn it ion  by parts of t h e  f i r s t  i r r e c r - u . i at- r i g h t  sanu  S~~u le

of ( 8 . 9 )  gives:

f  ~ (u ’ ) ~~(u - U ’ ) - i ’ t ’ = +i~~
2 ~2Li + i5,2f ~A 

~r 
- 

~~~~~ ‘ 

:t (~ .~o)

Now the rap idly vnnry I n c  n i r ’ r  of A ( lou — t) 1 s of ypt’ ox; ( i . i t )  , w i u~-n~ 1-11 0 n u p ( - r  t~ un ri-

is i n i r ’ g i ’ . Au - I - u / r i  inigl y, 1 2d/11t. —A an u l  ( C . ;O) t .r’tn u nn; ’orrn ;; in n :

- u ’ )t ~u ’ = + 1 6 2 
~~~~~ + 

- 

~ n ’ A ( ; n u  - ) ; n  ( 8 . i ~~)

~I bt ~ - r u  also the ru -mo i n  ing rnin ,’/ -’ of the i ;t i - g I ’ n i l  ( 6 .5 )  i s  t ;k r ’ ;u i n t o  n . t  , w.-

- ge t :

• ~ (u ’ ) A ( ~ — 
~~

‘ ) i  ~ = + oi~~
2 

~ + 1 :. sf - i~ 
- - - 

“ ‘. 

[
~~~~nt -

-A (u a  + t )  ~~t ( C . i ~~~

Eq. ( 8 . 12 )  provides  a way f ’ I r  - ‘ f u l f i l  ung - i i i -  :‘- , n tl t e r i r s  l i t - b  -l u t : ‘ t i i n L ~~’ u ’- ’ ; 5

to (l.2—~ ) and L p J / r ’o l u r ’ b t t . e  ~0 I i . - - o~ u. -a - ui - u r n ‘ i n c  -- - i 

.5 
~~—
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A new formulation has been ;cr000ni, -1 for ca-i  lot  ion l ’rom O r P n — e n u e I

guiding structures.  It is e s s e n t i a l l y  a f i e l d  theo ry  wh i c h  calculates  th -~

f ield as an integral over the r i r ~ of the guide. N o problem s of ray tracinc’,

or boundaries , or caustics arise. The theory c- -in even be extended to open

guides with a terminal flare an g i e.  Although presentt- /i only I~or the front

space , the formulation can be exten i eul t o  the rear sj r n i r e .

The key point of’ the theory is the canonical i’u-ob l em of a p;lr- tb 1 0 1 —I / l a t e

waveguide. It is not unexpected that when the theory is applied t.o un t n’i;c’ tures

far from the canonical  one , some discrepancies  are fotind. This i s , for exampl u’ *

the case for a circular waveguide e xc i t e d  by n t s y T n n i t  holly asymmetric’ modes ,

where the inc iden t-  f i e ld  on the r i m  of t h e  guide pu’co;ent n — n  ~— v a r - i at - i o n  w i t h

no counterpart in the o r ig ina l  canon ica l  prob 1 .- r n ; of a parallel plate Wn1v i~guu /I .

O b v i o u s l y ,  we can take as ba~-~c C a 1 l(’ f l(c u~~
’ 7 r ~ t .b t ’o that i ’~ ti n e c-~ ~cu~’a ’u n~xzve cqn~ de

w~.ti, azqmu,.thaUg a~tpnmctinic mode.~; ar u .i - o-r ’jv e ‘., ‘ t A ~ ,~ u A t 0 ‘01) , ni~~ 0 - / c l: n-n - ‘c ‘c~. t ,  i—

c ’nt u , e l , ~cat.tC~u
’lnq cOe. ~~-‘Cn-t4 w h u l cl w . , n u’ .: ‘ s O  to-s c 0 . ~~-- . — )

such a way the app licability of t iul s a -v n /- I ’ m 5 at 1 is w - - I - 5 - e r r  a n l ,v be

i - t i  I n t r g i - -.i n i t ,  t h e  e x n u e n s -e n i some fc; ’i rcu I - rn n I i  ~0t i

h~u i ; i n g  st,ruc’l,iur- i -un win . -ir 01’ s ’ W / n ’ l  n . ‘O,O i si l l , ’ n t n’~ ’ . ‘. ‘I’f ’r S’ntt . ‘j  - i ccli i nu r

waveguide ‘u u . i  t h e  r ’er t n i l ; ’ - ; , n i t ’ v- - -g~~i u s - ,

For the former , the n i t ’ t’i- n ’ - - n t t y ; ’ ’  ,u f i - - n ,  1 . - t n ’’,’ - ‘tH t j . f ~ 5 u ’ s - / H i s - n  I t:. -

I n -  of i r i - i - i ’ - r u t - (‘ l’~’c t ’i ( C  n u c  wel l  te n  ma(~b !&’t (t’ , n~~r 0 - ,, ’ - c~~ r u - - n ,  t~~~, A l ’ i n ’ :n t  u ’ . - ; - ;

way to h - v - u i- t iu e  l u r  lu I -n ; u W i t  1 1  i / i ’  I I ;~ - so - 1 s a 1  - - r i t e  ‘‘ ‘ ‘ s - i ’ f i  ‘ s ‘ ‘ . - i- I

ma,t~, r u , - t i u -  c ur r e f l t .S u / P t - I  m t / i from I h on . - :‘ I I : - - e l - - , - t  r i ’  ii .- by ;- tlity . A

b. - t .ti’r ni p i -c /nt - it W I - A 1 . 1  t u i -  t i n s s s  t . h s  - un /~ i ; t  j O t  0 t~ :;, ‘ ‘ t  ‘ . 5 / ng ; - y  a l u - t i  ~ i b  a s s-  w I ’

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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two different surl’ni c- e impi -u n intot ’:; ( i n  the par t  ieulan’i v - sit : tnd u i e for’r,, [ ‘1 ) o

model new scat teri ng coel ’f i  c i en t - s .

For the latter , the t’ormu I n i t  i o u  un i t p r esen t ed  I /Si’ I. Ce us l & _ t ; u , i , ~ - i ru - tile —

plate waveguide is al ready a P t  e t u g i v . ’ ~~~/ u u i  ‘0511 1 ( t n  . However , n t u e  us  us 0

d-~66~Jnent dispers ion  re la t ions  for  the  hi n i n u t  H s l an c o  i -s n e c e ss ar y . This is

cer ta inly  a rather unsa t is :’a.’tory p o i n t  and is again due to the necess i ty  of

handling a structure too different from the 5-ntruni n ir n l l one .

We believe that the limitation s of t h i s  t h e or y  n i t - u -  b i t t i n t r i n s ic  but

rather ref lect  i ts early stages. i t  is  probably wor th  d e v e l o p i n g  f i s t  u n o r  t h i s

novel formulation , which presents  a s i m p l i c i t y  r u n t -t number of a t t r n o - t  lye fea-

tures not available in cur ren t  ‘ i t -  s r i  e, n o f  hi gh n ’e i u en/ ’y r n i - i i a t  ion . 

~~~ -~~ .5’5’-- -- - - - - - - . -  -
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